High Performance p- and n-type GeTe Based TE Materials and Devices

1. High Thermoelectric Figure of Merit in GeTe by Complementary Co-doping of Bi and In

- In-doping in GeTe enhances the S value via Resonance Level Formation

Mott equation

$$\alpha(E) \propto \rho(E) \sigma(E)$$

$$\sigma(E)$$ is proportional to the density of states (DOS) at E.

- Bi-doping minimizes k_f of GeTe by introducing point defects and nano-structuring.

2. Realization of n-type GeTe Thermoelectrics: Electronic Structure Modulation by AgBiSe$_2$ Alloying

- Increasing contribution of Bi-p orbitals to the Conduction Band-edge explains n-type conduction.

3. Low Thermal Conductivity and High TE Performance in GeTe-GeSe-GeS Ternary System

- Pseudo-binary vs. pseudo-ternary

Low ZT

Outcome

Strategies

- Carrier concentration optimization
- Extensive point defect scattering
- Nano-structuring
- Valence band convergence
- Resonance level
- Synergistic approach

Acknowledgement

- I would like to acknowledge my PhD supervisor Prof. Kanishka Biswas
- I would like acknowledge USG, DST for the PhD fellowship
- I would like to acknowledge NCU and ICMs, JNCASR for all the facilities

Thank You