Synthesis and Magnetic Properties of Two-Coordinate Transition Metal Complexes

Philip C. Bunting1, Mihail Atanasov2,3, Emil Damgaard-Møller4, Mauro Perfetti5, Iris Crassee6, Milan Orlita6,7, Jacob Overgaard4, Joris van Slageren5, Frank Neese2, Jeffrey R. Long1,8,9

1Department of Chemistry, University of California, Berkeley; 2Max-Planck-Institut für Kohlenforschung; 3Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences; 4Department of Chemistry and Center for Materials Crystallography, Aarhus University; 5Institut für Physikalische Chemie and Center for Integrated Quantum Science and Technology (IQST), Universität des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL; 6Institute of Physics, Charles University; 7Institute of Sciences Division, Lawrence Berkeley National Laboratory.

Full paper at: Science, 2018, 362, 7319. DOI: 10.1126/science.aat7319
Funding from the National Science Foundation – CHE-1464841

Electronic Structure

• Molecular magnets exhibit properties of both classical & quantum systems such as magnetic hysteresis & quantum tunneling of magnetization, respectively
• Larger magnetic anisotropy yields larger spin-reversal barriers (U_{eff}) and greater thermal stability of magnetization

Magnetism

• dc magnetic susceptibility confirms well isolated $M_J = \pm 9/2$ ground state (solid lines are simulations from ab initio calculations)

Synthesis

• Design requirements: Co(II) in linear coordination environment with three-fold symmetry
• $[\text{C(SiMe}_3\text{)}]^{-}$ and $[\text{C(SiMe}_2\text{Ph}_3\text{)}]$ reduces Co(II) in situ
• Addition of aryl-oxide or alkoxide to ligand arms reduces electron density at central carbanion

Electronic Structure

• Lanthanide-like non-Aufbau electron filling arises from extremely weak ligand field
• Ab initio calculations indicate interelectron repulsion favors

 $d_{x^2-y^2}, d_{xy}$

 rather than the more electronically crowded

 d_{xz}, d_{yz}

• High resolution x-ray crystallography and QTAIM analysis confirms non-Aufbau d-orbital filling (orbital occupations as a percentage of total d-electron density in red)

Electron Configuration

$S = \frac{3}{2}, L = 3, J = \frac{9}{2}$